viernes, 7 de junio de 2013

el universo 
Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. Es muy grande, pero no infinito. Si lo fuera, habría infinita materia en infinitas estrellas, y no es así. En cuanto a la materia, el universo es, sobre todo, espacio vacío.

El Universo contiene galaxias, cúmulos de galaxias y estructuras de mayor tamaño llamadas supercúmulos, además de materia intergaláctica. Todavía no sabemos con exactitud la magnitud del Universo, a pesar de la avanzada tecnología disponible en la actualidad.

Galaxias Y Estrellas 
Las galaxias son sistemas que agrupan a millones de estrellas, gas y polvo interestelar. Según la clasificación de Hubble, éstas pueden ser elípticas, espiraladas o irregulares. 


Las primeras tienen forma esférica o achatada, mientras que las segundas, tienen dos brazos que se extienden en forma espiralada, y se llaman espirales barradas cuando esos brazos parecen provenir del extremo de una barra; aquellas galaxias que no tienen forma elíptica ni espiralada, llevan el nombre de regulares. Entre estas galaxias se destaca la Vía Láctea, ya que es en la que se encuentra el sistema solar. Esta galaxia contiene cerca de diez mil millones de estrellas, es de forma espiralada, con el Sol ubicado en uno de sus brazos a unos treinta mil años luz del centro (cada año luz es equivalente a 9,45 billones de kilómetros). Próxima Centauri es la estrella que más cerca se encuentra del sol, a unos 4,2 años luz. 
El Grupo Local es un conjunto de treinta galaxias entre las que se destacan la Vía Láctea y Andrómeda por ser las de mayor tamaño. 
¿Qué es el Universo? 
Según la teoría del big bang, el Universo tuvo su origen en una gran explosión y está en constante movimiento y expansión. Se contrapone a otras más antiguas originadas en el siglo XVII que lo creían estático, infinito e inalterable. 

Las teorías que intentan explicar el origen del cosmos son variadas y difieren entre sí. Una de ellas, enunciada en 1948 por un equipo de astrónomos de Cambridge (Inglaterra), sostenía que el universo existía en estado estacionario, que no variaría y se conservaría así eternamente. Esta forma de explicar el origen del universo fue superada por la teoría del big bang, apoyada por Albert Einstein. 

Según ésta, el universo se encuentra en permanente movimiento y expansión, a partir de una primigenia explosión de un punto infinitesimal, producida hace unos quince mil millones de años. 


Por su parte, el científico Alan Guth, observó la uniformidad del cosmos después de ese origen tan caótico. Con su teoría, intentó explicar una expansión más calma luego del violento big bang; mientras otros estudiosos creyeron que en el espacio seguían formándose nuevos universos. 

Antes y después del big bang 

Técnicamente, la teoría del big bang postula que el universo es un conjunto de partículas subatómicas (electrones, positrones, neutrones, protones y fotones de radiación), cuya temperatura asciende a cien mil millones de grados centígrados. 


Al explotar un punto cósmico infinitesimal, la temperatura descendió a diez mil millones de grados centígrados y la masa comenzó a expandirse, continuó enfriándose, y los positrones de carga opuesta empezaron a liberar energía. Se formaron protones y neutrones (partículas más pesadas) y núcleos de helio, que más tarde combinados con hidrógeno, fueron los que originaron los planetas, las estrellas y las galaxias. Las pequeñas diferencias de temperatura de estas radiaciones explicarían los efectos gravitatorios de la bola de fuego en expansión, generadores de cúmulos de galaxias en algunas zonas y espacio vacío en otras. El universo está formado, en su mayor parte, por espacio vacío, denominado también materia oscura. 

Galaxias y estrellas 


Edwin Hubble 
Las galaxias son sistemas que agrupan a millones de estrellas, gas y polvo interestelar. Según la clasificación de Hubble, éstas pueden ser elípticas, espiraladas o irregulares. 


Las primeras tienen forma esférica o achatada, mientras que las segundas, tienen dos brazos que se extienden en forma espiralada, y se llaman espirales barradas cuando esos brazos parecen provenir del extremo de una barra; aquellas galaxias que no tienen forma elíptica ni espiralada, llevan el nombre de irregulares. 


Entre estas galaxias se destaca la Vía Láctea, ya que es en la que se encuentra el sistema solar. Esta galaxia contiene cerca de diez mil millones de estrellas, es de forma espiralada, con el Sol ubicado en uno de sus brazos a unos treinta mil años luz del centro (cada año luz es equivalente a 9,45 billones de kilómetros). Próxima Centauri es la estrella que más cerca se encuentra del sol, a unos 4,2 años luz. 


El Grupo Local es un conjunto de treinta galaxias entre las que se destacan la Vía Láctea y Andrómeda por ser las de mayor tamaño. 

Las estrellas de la Vía Láctea forman en el cielo diversas figuras llamadas constelaciones. 

Las estrellas que forman las galaxias son de distintos tipos y se agrupan en sistemas binarios o múltiples: 


Binarios: compuestos por dos estrellas que giran alrededor de un sistema de gravedad común. 
Múltiples: poseen más de dos componentes individuales. 


Por lo general las estrellas poseen un brillo parejo, aunque a veces la luminosidad (magnitud) puede aumentar o disminuir según la producción de energía de la estrella. Pueden presentar diferentes colores según su temperatura: son azules las más calientes y rojas las más frías, contrariamente a los valores cromáticos conocidos. 


Las estrellas también mueren luego de un proceso que depende de la masa de su cuerpo; ésta se expande, agota su energía, muta en una esfera gigante roja y finalmente se contrae (enana blanca). Algunas veces con la expansión alcanza una mayor masa y luego explota hasta desintegrarse en el espacio (supernova); se considera que sus partículas son generadoras de una nube de gas en crecimiento. 


El universo también posee agujeros negros: zonas del espacio con intensa fuerza de gravedad; sólo se los detecta por sus efectos gravitatorios sobre otros astros.
 
las nebulosas 

Las nebulosas son inmensas masas gaseosas compuestas por partículas de polvo interestelar (carbono, silicio, silicato de hierro, magnesio y aluminio). Si poseen gran cantidad de polvo son oscuras lo que impide la llegada de la luz estelar; por ejemplo la Cabeza de Caballo, en la constelación de Orión y la del Saco de Carbón de la Cruz del Sur, son nebulosas de este tipo. 

A su vez las nebulosas brillantes pueden ser de dos tipos: de reflexión (poseen gran cantidad de gas y polvo) y de gas incandescente (también dependen de la energía estelar, su brillo se llama fluorescencia).
 


La teoría del Big Bang y el origen del Universo


El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.

Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.

En 1948 el físico ruso nacionalizado estadounidense George Gamow modificó la teoría de Lemaître del núcleo primordial. Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos.

Cálculos más recientes indican que el hidrógeno y el helio habrían sido los productos primarios del Big Bang, y los elementos más pesados se produjeron más tarde, dentro de las estrellas. Sin embargo, la teoría de Gamow proporciona una base para la comprensión de los primeros estadios del Universo y su posterior evolución. A causa de su elevadísima densidad, la materia existente en los primeros momentos del Universo se expandió con rapidez. Al expandirse, el helio y el hidrógeno se enfriaron y se condensaron en estrellas y en galaxias. Esto explica la expansión del Universo y la base física de la ley de Hubble.

Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.

Uno de los grandes problemas científicos sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).


constelaciones



Las estrellas que se pueden observar en una noche clara forman determinadas figuras que llamamos "constelaciones", y que sirven para localizar más fácilmente la posición de los astros. En total, hay 88 agrupaciones de estrellas que aparecen en la esfera celeste y que toman su nombre de figuras religiosas o mitológicas, animales u objetos. Este término también se refiere a áreas delimitadas de la esfera celeste que comprenden los grupos de estrellas con nombre.

Los dibujos de constelaciones más antiguos que se conocen señalan que las constelaciones ya habían sido establecidas el 4000 a.C. Los sumerios le dieron el nombre a la constelación Acuario, en honor a su dios An, que derrama el agua de la inmortalidad sobre la Tierra. Los babilonios ya habían dividido el zodíaco en 12 signos iguales hacia el 450 a.C.

Las actuales constelaciones del hemisferio norte se diferencian poco de las que conocían los caldeos y los antiguos egipcios. Homero y Hesíodo mencionaron las constelaciones y el poeta griego Arato de Soli, dio una descripción en verso de 44 constelaciones en su Phaenomena. Tolomeo, astrónomo y matemático griego, en el Almagesto, describió 48 constelaciones, de las cuales, 47 se siguen conociendo por el mismo nombre.

Muchos otras culturas agruparon las estrellas en constelaciones, aunque no siempres se corresponden con las de Occidente. Sin embargo, algunas constelaciones chinas se parecen a las occidentales, lo que induce a pensar en la posibilidad de un origen común.

A finales del siglo XVI, los primeros exploradores europeos de los mares del Sur trazaron mapas del hemisferio austral. El navegante holandés Pieter Dirckz Keyser, que participó en la exploración de las Indias orientales en 1595 añadió nuevas constelaciones. Más tarde fueron añadidas otras constelaciones del hemisferio sur por el astrónomo alemán Johann Bayer,que publicó el primer atlas celeste extenso.

Muchos otros propusieron nuevas constelaciones, pero los astrónomos acordaron finalmente una lista de 88. No obstante, los límites de las constelaciones siguieron siendo tema de discusión hasta 1930, cuando la Unión Astronómica Internacional fijó dichos límites.

Para designar las aproximadamente 1.300 estrellas brillantes, se utiliza el genitivo del nombre de las constelaciones, precedido por una letra griega; este sistema fue introducido por Johann Bayer. Por ejemplo, a la famosa estrella Algol, en la constelación Perseo, se le llama Beta Persei.

Entre las constelaciones más conocidas se hallan las que se encuentran en el plano de la órbita de la Tierra sobre el fondo de las estrellas fijas. Son las constelaciones del Zodíaco. Ademas de estas, algunas muy conocidas son Cruz del Sur, visible desde el hemisferiosur, y Osa Mayor, visible desde el hemisferio Norte. Estas y otras constelaciones permiten ubicar la posición de importantes puntos de referencia como, por ejemplo, los polos celestes.

La mayor constelación de la esfera celeste es la de Hydra, que contiene 68 estrellas visibles a simple vista. La Cruz del Sur, por su parte, es la constelación más pequeña.
 


las leyes del universo 

Leyes de Kepler

Se trata de tres leyes acerca de los movimientos de los planetas formuladas por el astrónomo alemán Johannes Kepler a principios del siglo XVII. Kepler basó sus leyes en los datos planetarios reunidos por el astrónomo danés Tycho Brahe, de quien fue ayudante. Sus propuestas rompieron con una vieja creencia de siglos de que los planetas se movían en órbitas circulares.
Primera ley: Los planetas giran alrededor del Sol en órbitas elípticas en las que el Sol ocupa uno de los focos de la elipse.

Segunda ley: Las áreas barridas por el segmento que une al Sol con el planeta (radio vector) son proporcionales a los tiempos empleados para describirlas. Como consecuencia, cuanto más cerca está el planeta del Sol con más rapidez se mueve.

Tercera ley: Los cuadrados de los periodos siderales de revolución de los planetas alrededor del Sol son proporcionales a los cubos de los semiejes mayores de sus órbitas elípticas. Esto permite deducir que los planetas más lejanos al Sol orbitan a menor velocidad que los cercanos; dice que el período de revolución depende de la distancia al Sol.

Estas leyes desempeñaron un papel importante en el trabajo del astrónomo, matemático y físico inglés del siglo XVII Isaac Newton, y son fundamentales para comprender las trayectorias orbitales de la Luna y de los satélites artificiales.

Gravitación universal


La gravitación es la propiedad de atracción mutua que poseen todos los objetos compuestos de materia. A veces se usa como el término "gravedad", aunque este se refiere únicamente a la fuerza gravitacional que ejerce la Tierra

La gravitación es una de las cuatro fuerzas básicas que controlan las interacciones de la materia. Hasta ahora no han tenido los intentos de detectar las ondas gravitacionales que, según sugiere la teoría de la relatividad, podrían observarse cuando se perturba el campo gravitacional de un objeto de gran masa.

La ley de la gravitación, formulada por Isaac Newton en 1684, afirma que la atracción gravitatoria entre dos cuerpos es directamente proporcional al producto sus masas e inversamente proporcional al cuadrado de la distancia entre ellos.


El efecto Doppler

La variación de la longitud de onda de la luz, radiación electromagnética y sonido de los cuerpos informa sobre su movimiento.Cuando un vehículo se acerca oímos su motor más agudo que cuando se aleja. Igualmente, cuando una estrella o una galaxia se acercan, su espectro se desplaza hacia el azul y, si se alejan, hacia el rojo.

De momento, todas las galaxias observadas se desplazan hacia el rojo, es decir, se alejan de aquí.

medidas del universo 

Conceptos básicos

Masa: es la cantidad de materia de un objeto.

Volumen: es el espacio ocupado por un objeto.

Densidad: se calcula dividiendo la masa de un objeto por su volumen.

Temperatura: la cantidad de calor de un objeto. La temperatura más baja posible en el Universo es de 273 ºC bajo cero (0º Kelvin), que es no tener ningún tipo de energía.

Unidades para medir distancias

Medir el Universo es complicado. A menudo no sirven las unidades habituales. Las distancias, el tiempo y las fuerzas son enormes y, como es evidente, no se pueden medir directamente.

Para medir la distancia hasta las estrellas próximas se utiliza la técnica del paralaje. Se trata de medir el ángulo que forman los objetos lejanos, la estrella que se observa y la Tierra, en los dos puntos opuestos de su órbita alrededor del Sol.

El diámetro de la órbita terrestre es de 300 millones de kms. Utilizando la trigonometría se puede calcular la distancia hasta la estrella. Esta técnica, sin embargo, no sirve para los objetos lejanos, perque el ángulo es demasiado pequeño y el margen de error, muy grande.

el brillo de los astros 
El brillo (magnitud estelar) es un sistema de medida en que cada magnitud es 2,512 veces más brillante que la siguiente. Una estrella de magnitud 1 es 100 veces más brillante que una de magnitud 6. Las más brillantes tienen magnitudes negativas.

Declinación

La declinación es la medida, en grados, del ángulo de un objeto del cielo por encima o por debajo del ecuador celeste.

Cada objeto describe un "círculo de declinación" aparente. La distancia, en horas, desde éste hasta el círculo de referencia (que pasa por los polos y la posición de la Tierra al inicio de la primavera) es la ascensión del objeto.

Combinando la ascensión, la declinación y la distancia se determina la posición relativa a la Tierra de un objecto.

Longitud de onda

La longitud de onda es la distancia entre dos crestas de ondas luminosas, electromagnéticas o similares. A menor longitud, mayor frecuencia. Su estudio aporta muchos datos sobre el espacio.

observación de los cosmos 

Desde sus orígenes, la especie humana ha observado el cielo. Primero, directamente, después con instrumentos cada vez más potentes.

Las antiguas civilizaciones agrupaban las estrellas formando figuras. Nuestras constelaciones se inventaron en el Mediterráneo oriental hace unos 2.500 años. Representan animales y mitos del lugar y la época. La gente creía que los cuerpos del cielo influían la vida de reyes y súbditos. El estudio de los astros se mezclaba con supersticiones y rituales.

Las constelaciones que acompañan la trayectoria del Sol, la Luna y los planetas, en la franja llamada zodíaco, nos resultan familiares: Aries, Tauro, Géminis, Cáncer, Leo, Virgo, Libra, Escorpión, Sagitario, Capricornio, Acuario y Piscis.


A principios del siglo XVII se inventó el telescopio. Primero se utilizaron lentes, después espejos, también combinaciones de ambos. Actualmente hay telescopios de muy alta resolución, como el VLT, formado por cuatro telescopios sincronizados.

El telescopio espacial Hubble (HST), situado en órbita, captura y envía imágenes y datos sin la distorsión provocada por la atmósfera.

Los radiotelescopios detectan radiaciones de muy diferentes longitudes de onda. Trabajan en grupos utilizando una técnica llamada interferometría.

La fotografía, la informática, las comunicaciones y, en general, los avances técnicos de los últimos años han ayudado muchísimo a la astronomía.

Gracias a los espectros, producidos por la descomposición de la luz, podemos conocer información detallada sobre la composición química de un objeto. También se aplica al conocimiento del Universo.

Un hallazgo reciente, las lentes gravitacionales, aprovechan el hecho de que los objetos con masa pueden desviar los rayos de luz. Si se localiza un grupo de cuerpos con la configuración apropiada, actúa como una lente potentísima y muestra, en el centro, objetos distantes que no podríamos ver.

el sistema solar
El Sistema Solar es un conjunto formado por el Sol y los cuerpos celestes que orbitan a su alrededor. Está integrado el Sol y una serie de cuerpos que están ligados gravitacionalmente con este astro: nueve grandes planetas (Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno, y Plutón), junto con sus satélites, planetas menores y asteroides, los cometas, polvo y gas interestelar.

Pertenece a la galaxia llamada Vía Láctea, que esta formada por unos cientos de miles de millones de estrellas que se extienden a lo largo de un disco plano de 100.000 años luz.

El Sistema Solar está situado en uno de los tres brazos en espiral de esta galaxia llamado Orión, a unos 32.000 años luz del núcleo, alrededor del cual gira a la velocidad de 250 km por segundo, empleando 225 millones de años en dar una vuelta completa, lo que se denomina año cósmico.

Los astronomos clasifican los planetas y otros cuerpos en nuestro Sistema Solar en tres categorías:

Primera categoría: Un planeta es un cuerpo celeste que está en órbita alrededor del Sol, que tiene suficiente masa para tener gravedad propia para superar las fuerzas rígidas de un cuerpo de manera que asuma una forma equilibrada hidrostática, es decir, redonda, y que ha despejado las inmediaciones de su órbita.

Segunda categoría: Un planeta enano es un cuerpo celeste que está en órbita alrededor del Sol, que tiene suficiente masa para tener gravedad propia para superar las fuerzas rígidas de un cuerpo de manera que asuma una forma equilibrada hidrostática, es decir, redonda; que no ha despejado las inmediaciones de su órbita y que no es un satélite.

Tercera categoría: Todos los demás objetos que orbitan alrededor del Sol son considerados colectivamente como "cuerpos pequeños del Sistema Solar".

No hay comentarios:

Publicar un comentario